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Sammm'y--The hydroxylation of cholesterol, bile acids, and steroid hormones by liver 
cytochrome P450 (CYP) enzymes proceeds with a high degree of regiospecificity, and 
contributes to both biosynthetic and catabolic pathways of sterol metabolism. CYP 7-cata- 
lyzed cholesterol 7:,-hydroxylation, a key control point of bile acid biosynthesis, is regulated 
at a pretranslational step, probably transcription initiation, by multiple factors, including liver 
bile acid and cholesterol levels, thyroid hormone status, and diurnal rhythm. Hydrophobic bile 
acids, such as lithocholic acid, are converted to less cholestatic derivatives by 6p-hydroxylation 
carried out by CYP 3A P450s, which also catalyze steroid hormone 6p-hydroxylation 
reactions. Complex, gender-dependent developmental patterns characterize the expression of 
steroid 5ct-reductase and several rat liver steroid hydroxylase CYPs. Multiple pituitary- 
dependent factors regulate the expression of these enzymes; of greatest importance are the 
gonadal steroids and the sex-dependent secretory patterns of growth hormone (GH) that they 
impart. The continuous presence of GH in circulation, a characteristic of adult female rats, 
positively regulates expression of the female-specific steroid disulfate 15/~-hydroxylase CYP 
2C12, while expression of the male-specific steroid 16:,- and 2~t-hydroxylase CYP 2C11 is 
stimulated by the intermittent pituitary secretion of GH that occurs in adult male rats. 
Intermittent GH can stimulate CYP 2C11 gene expression even when the hormone presents 
to the hepatocyte at a non-physiological pulse amplitude, duration, and frequency, provided 
that an interpulse interval of no GH (obligatory recovery period) is maintained for at least 
2.5 h. GH regulates the expression of the CYP 2C11 and CYP 2C12 genes at the level of 
transcription initiation. This process is probably mediated by sex-dependent and GH-regulated 
protein-DNA interactions, such as those observed in the 5'-flank of the CYP 2C12 gene. 
Thyroid hormone is a second major regulator of liver steroid hydroxylase P450 activity. It 
regulates these enzymes directly, at a pretranslational step, and indirectly, through its 
stimulation of pituitary GH secretion and by its positive effects on the expression of the 
flavoenzyme NADPH-P450 reductase, which catalyzes electron transfer that is obligatory for 
all microsomal steroid hydroxylation reactions. 
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Of the ten mammalian cytochrome P450 (CYP) 
gene families described as of  1991 [1], eight 
encode enzymes that catalyze steroid hydroxyl- 
ations. Four  families include the key P450 
enzymes required for steroid hormone 
biosynthesis from cholesterol (CYP 11, CYP 17, 
CYP 19, CYP 21) and two participate in the 

1055 



1056 DAVID J. WAXMAN 

conversion of cholesterol to bile acids in the 
liver, where they contribute in a major way to 
cholesterol homeostatis (CYP 7, CYP 27). 
Members of two other steroid hydroxylase 
families, CYP 2 and CYP 3, are expressed at 
high levels in liver, where they catalyze a broad 
range of hydroxylation reactions utilizing ster- 
oid hormones and bile acids, in addition to 
drugs and other foreign compounds. Liver ex- 
pression of these steroid hydroxylase P450s is 
under endocrine control, with growth hormone 
(GH) and the thyroid hormones (T3, T4) play- 
ing major roles in regulating enzyme expression. 
This article reviews the biochemistry and regu- 
lation of several liver-specific steroid hydroxyl- 
ase cytochrome P450 enzymes, with particular 
emphasis placed on P450s involved in bile acid 
biosynthesis and metabolism, and on the sex- 
specific steroid hydroxylase P450s that are 
under endocrine control. 

1. REGULATION OF CHOLESTEROL 
7",-HYDROXYLASE (CYP 7) AND ITS CONTROL 

OF BILE ACID BIOSYNTHESIS 

The synthesis of bile acids from cholesterol 
requires the sequential action of several liver- 
specific P450 hydroxylases [2, 3] [Fig. I(A)]. 
These include (a) cholesterol 7~-hydroxylase 
(CYP 7), which catalyzes the first and rate- 
limiting step of the overall biosynthetic 
pathway, (b) 7~t-hydroxy-4-cholesten-3-one 
12ct-hydroxylase, which is at the branchpoint 
leading to synthesis of cholic acid (3~t, 7~t, 
12~-trihydroxy-5fl-cholanoic acid) versus 
chenodeoxycholic acid (3~, 7~t-dihydroxy-5fl- 
cholanoic acid), and (c) P450-1inked enzymes 
required for oxidative cleavage of the side chain 
of the C27 steroid to yield the C24 bile acid 

carboxylate; this latter sequence of reactions is 
initiated by a mitochondrial P450 enzyme, CYP 
27, whose eDNA has been cloned, sequenced, 
and expressed [4, 5]. Of these three P450 en- 
zymes, cholesterol 7~t-hydroxylase (CYP 7) has 
received the most attention, owing to the major 
role that it plays in regulating the overall con- 
version of cholesterol to bile acids [Fig. 
I(B)] [6, 7]. Studies carried out primarily in rat 
liver have established that cholesterol 7~t-hy- 
droxylation is regulated by multiple physiologi- 
cal factors. These include (a) down-regulation 
by bile acids, which return from the gut to the 
liver via the enterohepatic circulation, where 
they feedback inhibit liver microsomal choles- 
terol 7ct-hydroxylase. This effect can take up to 
several days to be fully established, and is 
viewed as a form of long-term enzyme regu- 
lation; (b) mid-term regulation in response to 
diurnal factors, with enzyme activity maximal at 
midnight and at a minimum during the day, 
when the demand for bile acids is low; and (c) 
short-term responses to factors such as stress, 
other modulators of circulating corticosteroid 
levels, mevalonate injection (stimulation of liver 
cholesterol synthesis), and changes in thyroid 
hormone status [6, 8]. 

Early studies of microsomal cholesterol 7~- 
hydroxylase established that this P450 enzyme 
is immunochemically and biochemically distinct 
from 9 other rat liver P450s, including CYP 
2A1, a highly regiospecific steroid hormone 
7~t-hydroxylase [9]. Studies in this area were 
given a major boost by the successful purifi- 
cation of rat liver cholesterol 7~-hydroxylase in 
1987110]. This development facilitated prep- 
aration of antibody probes useful for monitor- 
ing changes in levels of enzyme protein, and was 
also an important factor leading to the cDNA 
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Fig. 1. Role of  cholesterol 7~-hydroxylase (CYP 7) in conversion of  cholesterol to bile acids. (A) Pathway 
leading from cholesterol to the major bile acids includes cholesterol 7a-hydroxylation (a), additional 
modifications to the steroid nucleus Co), and oxidative cleavage of  the side chain, with introduction of  
a carboxyl group (c). (B) Feedback "inhibition" of  CYP 7 gene expression is relieved in animals fed a 
diet containing cholestyramine (CST). This dietary treatment effectively blocks the return of  bile acids 
from the gut to the liver via the enterohepatic circulation, and induces liver CYP 7 m R N A  levels, as seen 
in the Northern blot analysis o f  CYP 7 m R N A  in rat liver RNA samples isolated from normal diet (lanes 
1-3) as compared to cholestyramine-fed rats (lanes 4-6). Size heterogeneity of  CYP 7 m R N A  reflects 
utilizing of  multiple polyadenylation signals. CYP 2C6 m R N A  levels serve as an internal standard for 

RNA load consistency. Data shown in (B) are from [17]. 

cloning of this P450 from rat [11-13] and sub- 
sequently human liver [14]. Cholesterol 7~-hy- 
droxylase belongs to a unique P450 gene family, 
CYP 7. Genomic clones, including Y-flanking 
DNA sequences, have been described[15, 16]. 
With the availability of these immunochemical 
and DNA probes, important questions relating 
to the mechanisms by which cholesterol 7a- 
hydroxylase gene expression is regulated could 
be addressed. 

Changes in microsomal cholesterol 7~- 
hydroxylase activity have been directly corre- 
lated with changes in CYP 7 protein and mRNA 
levels under a wide range of physiological con- 
ditions [13, 17, 18]: (a) CYP 7 mRNA, protein, 
and activity are induced to similar extents over 
a period of days by dietary cholestyramine 
(interruption of bile acid feedback inhibition) 
[Fig. I(B)] or by feeding cholesterol, the sub- 
strate of CYP 7. Apparent discrepancies in bile 
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fistula rats between the fold-increases in hepatic 
microsomal cholesterol 7~-hydroxylase activity 
as compared to the associated increases in CYP 
7 protein level have been reported by some [19] 
but not other investigators [20]. Such discrepan- 
cies may arise if the anti-CYP 7 antibody used 
to quantitate CYP 7 protein mass is crossreac- 
tive with other microsomal proteins. (b) CYP 7 
mRNA and protein both vary diurnally, and are 
maximal in rat liver at midnight. (c) CYP 7 
mRNA was shown to be rapidly induced (3- to 
6-fold increase within 2.5 h) by the cholesterol 
precursor mevalonate[17]. This increase can 
fully account for the associated increase in 
microsomal cholesterol 7ct-hydroxylase activity, 
and indicates that this short-term response of 
enzyme activity to mevalonate does not result 
from increases in the local concentration of 
cholesterol substrate, as was originally pro- 
posed [21]. Thyroid hormone can also rapidly 
induce CYP 7 mRNA, albeit at doses that are 
supraphysiologic [22]. Although the above stud- 
ies establish that both long- and short-term 
regulation of CYP 7 is primarily at a pretransla- 
tional level, other potential regulatory mechan- 
isms, including translational regulation, 
regulated enzyme degradation, allosteric effects 
of bile acids on CYP 7 protein, changes in 
cholesterol availability [23, 24], and reversible 
dephosphorylation/phosphorylation of a puta- 
tive CYP 7 phosphoprotein [25, 26] could, con- 
ceivably, come into play under some 
circumstances (cf. multifactorial regulation of 
HMG-CoA reductase, the key regulatory en- 
zyme of cholesterol synthesis) [27]. 

Important questions remain regarding the 
underlying mechanisms for this multifactorial 
regulation of CYP 7 mRNA levels. The appar- 
ent short half-life of CYP 7 mRNA, evidenced 
by its diurnal rhythm, has been proposed to be 
a function of its long 3'-untranslated sequence 
(~2kb) ,  which contains multiple AUUA, 
AAU, and UAA motifs that might contribute to 
mRNA degradation[18]. Evidence for tran- 
scriptional regulation has been provided by 
nuclear run-on analyses, which suggest that 
transcript initiation can be stimulated up to 2- 
to 3-fold by long-term cholesterol feeding or by 
bile acid withdrawal [20]. This suggests that 
cholesterol, or one of its metabolites (perhaps 
an oxysterol), positively regulates gene tran- 
scription by directly or indirectly modulating 
the DNA binding affinity or activity of a tran- 
scription factor that interacts with controlling 
elements within the CYP 7 gene or its flanking 

DNA. Sterol response elements (SREs) similar 
to those present in the 5'-flanking DNA of 
HMG-CoA reductase and the low density lipo- 
protein (LDL) receptor genes [27] are, however, 
not apparent in the Y-flanking 600 nucleotides 
of the rat CYP 7 gene [15]. 

As noted above, bile acid feedback 
"inhibition" of liver cholesterol 7~t-hydroxylase 
activity is a major physiological control mech- 
anism for bile acid biosynthesis, and is operative 
at the level of CYP 7 mRNA. This feedback 
regulation of CYP 7 mRNA expression could 
conceivably be mediated by specific receptor 
proteins/transcription factors that suppress 
CYP 7 gene transcription when bound by bile 
acids. However, while bile acids clearly effect a 
long-term down-regulation of CYP 7 expression 
in vivo, direct effects of bile acids on cholesterol 
70t-hydroxylase activity or bile acid synthesis 
rates have been difficult to demonstrate in cul- 
tured cells (e.g.[24,28]; see, however, J29]). 
Moreover, chronic biliary obstruction in rats (4 
weeks bile duct ligation), which is associated 
with a significant increase in bile acids both in 
liver (2-fold increase) and in serum (25-fold 
increase), does not decrease hepatic cholesterol 
7~t-hydroxylase activity, but actually elevates it 
~2-fold [30]. These findings raise the question 
as to whether the induction of CYP 7 expression 
following bile acid withdrawal in vivo might 
actually be driven by the associated changes in 
intracellular cholesterol levels, rather than re- 
moval of bile acids per se [31]. An alternate 
hypothesis is that the feedback inhibitory effects 
ascribed to bulk bile acids result from the action 
of specific (perhaps minor) bile acids not tested 
in the cell culture experiments and not present 
at sufficient levels to be inhibitory in the bile 
duct ligation studies. In support of this proposal 
is the finding that specific hydrophobic bile 
acids exhibit enhanced potency at down- 
regulating bile acid biosynthesis and cholesterol 
7~-hydroxylase activity [8, 32]. Further clarifi- 
cation of these and related questions will require 
the identification of cis-acting regulatory el- 
ements in the CYP 7 gene and any trans-acting 
factors with which they interact to control P450 
cholesterol 7ct-hydroxylase gene expression. 
Preliminary studies suggest that cell lines such 
as human HepG2 cells [33], conditionally trans- 
formed, hepatocyte-derived rodent cell lines 
(G. Gil, personal communication), and a re- 
cently developed 25-hydroxycholesterol-resist- 
ant cell line that stably expresses CYP 7 mRNA 
and activity [34] may prove useful in this regard. 
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2. L I V E R  P 4 5 0 s  A C T I V E  IN  S T E R O I D  H O R M O N E  
A N D  B I L E  A C I D  H Y D R O X Y L A T I O N  

In addition to cholesterol, numerous other 
lipophilic compounds, including steroid hor- 
mones, bile acids, and fatty acids serve as 
important endogenous substratcs of liver 
P450s [35]. Testosterone, progesterone, and re- 
lated steroid hormones arc hydroxylatcd in liver 
at multiple sites, principally by P450s belonging 
to gene families 2 (CYP 2) and 3 (CYP 3) 
(Fig. 2) (Table l). The physiologic importance 
of many of these steroid hormone hydroxylation 
reactions is not fully understood, but may in- 
clude one or more of the following: (a) hormone 
deactivation, (b) synthesis of novel steroids with 
unique biological properties or endocrine activi- 

ties (e.g. CYP 2Al-catalyzed formation of 7a- 
hydroxytestosterone, which may help regulate 
testosterone production and metabolism in the 
testis [36, 37]), and (c) targetting of the steroid 
for conjugation and elimination. It is also poss- 
ible that some steroid hydroxylations may be 
incidental activities of liver P450s whose pri- 
mary function is the hydroxylation of other 
endogenous substrates, or perhaps even xeno- 
biotic metabolism. The broad substrate specific- 
ities that arc inherent to many liver 
P450s [38, 39], including those active in steroid 
hormone hydroxylation, support this latter 
suggestion. Regardless of their biological func- 
tions, the unique regio- and stereo-specificities 
of steroid hydroxylation exhibited by individual 

Table 1. Sex-dependence of rat liver P450s and steroid 5u-reductase 

Hormonal regulation d 
Testosterone 
hydroxylase Androgenic Thyroid 

CYP designation" Trivial names b activities c imprinting c hormone t 

I. Male-specific 
2A2 RLM2, M2 15" + + ± 
2Cl l  2c, h, UT-A, MI,  RLM5 2", 16" + +  :[2 
2C13 g, RLM3, M3 6fl-s, 15" + + ND 
3A2 PCN2, 6fl-I 6~, 2fl + + - -  
4A2 IVA2, K-5 - ND - 

2. Female-specific 
2C12 2d, i, UT-I, F1 1 5 f l  i - - -  ____. 

3. Female-predominant j 
2AI 3, a, UT-F 7" ND - 
2C7 f, RLMSb 16,, ND + + 
5~t-Reductase 5,, R - - - + + 

' Ref. [1]. 
~Designations given by various investigators to purified P450 protein preparations. See Refs [38, 40] for more complete 

listings and references. 
CShown are the major sites of testosterone hydroxylation catalyzed by the individual P450 proteins in purified, reconstituted 

enzyme systems. Testosterone metabolites specific to the P450's activity in rat liver microsomal incubations are 
underlined. Based on [38, 40, 62] and references therein. 

d Influence of OH secretory patterns is summarized in Fig. 4 and is not reiterated here. " +  + "  indicates a positive effect on 
adult enzyme expression, while " -  - "  indicates a suppressive effect. " - "  indicates a lesser degree of suppression, while 
"_+" indicates no major effect. ND---not determined in a definitive manner. 

eBased on Refs [57, 60, 62, 73]. 
rBased on Refs [79, 82, 83, 89, 90]. 
'Although purified CYP 2C13 exhibits high testosterone hydroxylase activity, this enzyme makes marginal contributions to 

liver microsomal testosterone hydroxylation [125]. 
h P450 4A2 does not catalyze testosterone hydroxylation. 
~15p-Hydroxylation of steroid sulfates. CYP 2C12 also catalyzes weak testosterone 15r,- and I '-hydroxylaze activities. 
JLiver expression readily detectable in both male and female rats, but at a 3- to 10-fold higher level in females as compared 

to males. 
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liver P450s have proven very useful for charac- 
terizing these enzymes and for assessing the 
purity of isolated enzyme preparations[40]. 
These site-specific hydroxylations also provide 
catalytic monitors that differentiate between 
closely related liver P450s and can be used to 
assay for changes in their relative microsomal 
levels in response to drug exposure [40, 41] or 
changes in hormonal status (see below). Corre- 
sponding hydroxylation reactions in human 
liver microsomes [42] can also provide useful, 
non-invasive in vivo monitors [43] for hepatic 
monooxygenase capacity attributable to specific 
P450s. Finally, steroid hydroxylation reactions 
can facilitate studies on the active sites of these 
cytochromes, with dramatic alterations in the 
activity and/or site-specificity of hydroxylation 
sometimes occurring with changes of only 1-3 
amino acid residues [44-46, 46a]. 

Bile acids comprise another important class 
of steroidal substrates of the liver P450s. Bile 
acids serve several important biological func- 
tions, including solubilization of cholesterol and 
phospholipids secreted into bile, and emulsifica- 
tion of dietary fats in the intestine, which facili- 
tates their digestion. These functions require 
that the ratio of hydrophobic bile acids (those 
with only one or two hydroxyl groups on the 
steroid nucleus; e.g. lithocholic acid) to hy- 
drophilic ones (three hydroxyl groups; e.g. 
cholic acid) be maintained within relatively 
narrow limits[35]. The formation of hydro- 
phobic secondary bile acids by bacterial 70t- 
dehydroxylation in the intestine (e.g. conversion 
of cholate to deoxycholate, and chenodeoxy- 
cholate to lithocholate) can lead to toxicity and 
cholestasis unless counteracted by bile acid hy- 
droxylation, which is liver P450-catalyzed. 
These hydroxylations are distinct from those 
required for the synthesis of bile acids from 
cholesterol, and are carried out in a species- 
specific manner. In rodents, bile acid 6fl- 
hydroxylation is the most important reaction, 
and the resultant muricholic acids are major 
constituents (~20%)  of the total bile acid 
pool [47]. Lithocholic acid is hydroxylated by 

rat liver microsomes predominantly at the 6fl 
position (Fig. 3), with smaller amounts of 7~ 
and 6~t hydroxylated products also formed [48]. 
A hamster lithocholic acid 6fl-hydroxylase, 
CYP 3A10, has recently been cloned and shown 
to be expresed in a male-specific manner in 
hamster liver [49]. This bile acid hydroxylase is 
inducible in young animals by cholic acid feed- 
ing. The same P450 can catalyze steroid hor- 
mone 6fl-hydroxylation at a similar efficiency, 
despite the major differences in polarity and 
overall shapes of the two steroids (Fig. 3) 
(Chang, Teixeira, Gil, and Waxman, submitted 
for publication). In humans, the steroid hor- 
mone 6fl-hydroxylase CYP 3A4142, 50]) can 
also metabolize lithocholic acid, but in this case 
the bile acid is hydroxylated at the 6~ position 
(the major site of lithocholic acid metabolism in 
human liver [51]), followed by 6-O-glucuronida- 
tion and excretion [52]. By contrast, lithocholic 
acid 6fl-hydroxylation in rat liver is catalyzed by 
P450(s) that are distinguishable from the major 
microsomal CYP 3A catalysts of steroid hor- 
mone 6fl-hydroxylation [53]. Further studies are 
required to identify the structural features of the 
CYP3A enzymes that determine their site spe- 
cificities for bile acid hydroxylation, and in the 
case of the rat enzyme, the requirements for 
recognition of bile acid versus neutral steroid 
substrates. 

3. SEX-SPECIFIC EXPRESSION OF STEROID 
HYDROXYLASE LIVER P450s 

Early studies on the purification and charac- 
terization of steroid hydroxylase P450s from rat 
liver led to the discovery that several of these 
enzymes are expressed in a sex-specific manner, 
subject to developmental regulation, and under 
endocrine control (Table 1; for reviews, 
see [40, 54]). For instance, CYP 2C11, the major 
male-specific androgen 160t- and 2ct-hydroxyl- 
ase of adult rat liver, is induced at puberty in 
male but not female rats [55, 56], as are two 
other male-specific steroid hydroxylase P450s, 
CYP 2A2 [57, 58] and CYP 2C13 [59, 60]. In 

androstenedione 

~ COOH 

/ lithocholic acid 

OH 

Fig. 3. Structural comparison of androstcnedione and lithocholic acid. Both steroids can undergo 
6fl-hydroxylation reactions catalyzed by CYP 3A P450s, despite significant differences in the polarity and 

overall shape of the two steroids. Figure is from [53]. 
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contrast, the female-specific steroid sulfate 15/~- 
hydroxylase CYP 2C 12 is induced at puberty in 
female rat liver[61,62], as are the female- 
predominant liver enzymes CYP 2C7 (a weak 
steroid 16~-hydroxylase) [59, 63] and steroid 
5~-reductase [62, 64], which is not a cytochrome 
P450. Other sex-dependent rat liver P450s 
exhibit somewhat more complex postnatal 
profiles. CYP 3A2 is an adult male-specific 
steroid 6fl-hydroxylase that is expressed in both 
sexes shortly after birth, but is suppressed at 
puberty only in females [62, 65]. CYP 2A1 is a 
female-predominant steroid 7~-hydroxylase 
(female-male CYP 2A1 ratio = 3-4:1 at adult- 
hood) that is expressed in both sexes shortly 
after birth and is suppressed at puberty to a 
greater extent in males than in females [62]. 

Studies on the endocrine regulation of these 
liver P450s have been directed toward resol- 
ution of three general questions: (1) Which 
hormones regulate their sex-dependent ex- 
pression? (2) How do these hormones interact 
with each other and with the hepatocyte? By 
which mechanisms do they regulate P450 en- 
zyme expression? These questions are not only 
important for our understanding of the regu- 
lation of liver steroid metabolic pathways, 
but also have implications with respect to 
the influence of hormonal status on a broad 
range of other reactions that can be catalyzed 
by these steroid hydroxylase P450s, including 
drug metabolism and carcinogen acti- 
vation [64, 66, 67]. They also serve as a model 
system for elucidation of the endocrine axes that 
regulate hepatic gene expression. The following 
general conclusions have emerged from these 
studies: 

(a) 

(b) 

The sex-dependent steroid hydroxylase 
P450s are regulated at a pretranslational 
level, with parallel changes in liver micro- 
somal steroid hydroxylase activity, P450 
protein, and P450 mRNA generally oc- 
curring in response to changes in hor- 
monal status (e.g. [68, 69]). 
The male-specific P450s are expressed in 
postpubertal animals in response to early 
(postnatal) androgen exposure, which im- 
prints [70, 71], or programs, for later de- 
velopmental changes [57, 62, 72] (Table 1). 
In contrast, adult androgen exposure con- 
tributes in a reversible manner to the main- 
tenance of full enzyme expression at 
adulthood [73]. The mechanism by which 
neonatal androgen exposure imprints liver 

(c) 

(d) 

gene expression is still obscure, but prob- 
ably involves the hypothalamus and its 
regulation of pituitary GH secretory pat- 
terns [74], which play a key role in regulat- 
ing expression of the sex-specific P450 
enzymes (see below). Direct effects of an- 
drogen on liver enzyme expression (i.e. 
effects of androgen in hypophysectomized 
rats) can be observed in some instances, 
but these are minor compared to the 
effects of GH. 
Continuous plasma GH, a characteristic 
of adult female rats, stimulates expression 
of the female-specific CYP 2C12, while 
intermittent GH pulsation, associated 
with adult male rats, induces the ex- 
pression of CYP 2Cl1156,61,75,76] 
(Fig. 4). Continuous GH can also stimu- 
late the expression of several female- 
predominant enzymes, including steroid 
5~-reductase, CYP 2A1, and CYP 
2C7 [77-80]. The effect of intermittent GH 
exposure on other male-specific liver 
P450s (2A2, 2C13, 3A2, 4A2) is less clear. 
Expression of these CYP enzymes is not 
obligatorily dependent on GH pulses, 
when judged by their high level of ex- 
pression in hypophysectomized rats of 
both sexes[57, 60,81,82]. On the other 
hand, the expression of these P450s in 
liver can be stimulated by intermittent GH 
pulses given to adult male rats depleted of 
circulating GH by neonatal monosodium 
glutamate treatment (D. J. Waxman, P. A. 
Ram, and B. H. Shapiro, unpublished 
experiments). 
GH can also have negative effects on liver 
steroid hydroxylase enzyme expression. 
Continuous infusion of GH markedly sup- 
presses expression of the male-specific 
P450s (Fig. 5). This suppression cannot be 
attributed solely to the destruction of pul- 
satile plasma GH profiles that occurs 
when intact male rats are given GH by 
continuous infusion, since suppression of 
the male-specific P450s can also be ob- 
served in hypophysectomized rats given 
continuous GH infusion. GH suppression 
also occurs in the case of some of the 
female-predominant enzymes, in response 
to the male pattern of intermittent plasma 
GH [78, 83]. GH can also suppress the 
basal and/or induced levels of some of 
the xenobiotic inducible liver P450s (e.g. 
GH suppression of the phenobarbital- 



1062 DAVID J. WAXMAN 

G R O W T H  H O R M O N E  R E G U L A T I O N  

P - 4 5 0  FORM 

M A L E  F E M A L E  

serum . . . . .  -,,- 2E1 ~ . . . . .  

GH . . . .  ~2A1,  5 o c R ~  

2C12 - -  
" p u ' s G f " e "  I ii " " '* con t i nuous  

] enzyme induc t ion  
d~specific: 2C11, 2A2, 3A2 / 

predominant: 2A1, 5eR . . . .  ~ enzyme  suppressionJ 

specific: 2C12 

Fig. 4. Role of  GH secretory profiles in the expression of  rat hepatic P450 enzymes and steroid 
5,,-reductase. Influence of  pulsatile vs continuous plasma GH on the expression of  hepatic enzymes whose 
expression in adult rats is male-specific, female-predominant, or female-specific. Stimulation of  enzyme 
expression is indicated by a solid line, and suppression of  enzyme expression by a dashed line. Other 
pituitary-determined hormones (e.g. thyroid hormone) may be required for the full effects o f  GH on some 

of  these hepatic enzymes (see text). 5~R--Steroid 5et-reductase. Figure is modified from [78]. 

M M 
+ + 

M F hGH rGH M 

A 

4A2 

2 C l l  

3A2 

2C12 

1 2 3 4 5 6 7 8 9 10 11 

Fig. 5. Continuous GH treatment suppresses male-specific P450 mRNAs (A-C) while it induces the 
female-specific CYP 2C12 m R N A  (D). Shown is a Northern blot of  liver RNA samples isolated from 
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shown is from [82]. 
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(e) 

inducible CYP 2B l, which occurs both 
in vivo [84], and in hepatocyte cul- 
tures[85, 86]). In the case of CYP 2El, 
both continuous and intermittent GH 
treatment suppress enzyme expression 
when administered to hypophysectomized 
rats [78, 87] (Fig. 4), albeit not when given 
to rats rendered GH-deficient by strepto- 
zotocin-induced diabetes [88]. 
Although GH is the major regulator of  
these liver P450s, thyroid hormone also 
plays a critical role: it positively regulates 
some [79] but not all [83] of  the female- 
predominant enzymes, and it negatively 
regulates some of the male-specific en- 
zymes [89, 90] (Table 1). These effects of 
thyroid hormone, which can be demon- 
strated in both hypophysectomized and 
hypothyroid rats, are independent of the 
indirect effects that thyroid hormone has 
on liver P450 levels as a consequence of its 
effects on liver GH receptors [91] and its 
stimulation of GH gene transcription and 
GH secretion by the pituitary [92]. 

4. CELLULAR AND MOLECULAR MECHANISMS 
OF GH ACTION 

4.1. Cellular actions 

GH can act directly on the hepatocyte to 
regulate liver P450 expression, as demonstrated 
by the responsiveness of primary rat hepatocyte 
cultures to GH-stimulated expression of CYP 
2C12 (Fig. 6)[93]. To date, however, it has 

not been possible to reproduce in these hepato- 
cyte cultures the intermittent GH stimulation 
of  CYP 2Cl l  expression that occurs in vivo. 
This raises the possibility that the effects of 
intermittent GH require the participation of 
additional endocrine factors not present in the 
cell cultures. 

At the cellular level, it is highly likely that the 
plasma membrane-bound GH receptor [94, 95] 
transduces the effects of  GH binding at the 
hepatocyte surface [95a]. This binding is associ- 
ated with receptor dimerization [96], perhaps 
similar to that observed with several other 
polypeptide hormone receptors [97]. GH bind- 
ing may also lead to phosphorylation on tyro- 
sine of the GH receptor and/or other associated 
proteins [98], as occurs with several other mem- 
bers of the cytokine receptor superfamily. How- 
ever, in view of the apparent absence of a 
tyrosine kinase domain in the GH receptor 
polypeptide chain, this phosphorylation is un- 
likely to be catalyzed by the GH receptor itself. 

Studies in intact male rats have shown that 
the GH receptor internalizes to an intracellular 
compartment coincident with its stimulation by 
plasma GH pulses, and reappears at the cell 
surface at the time of the next hormone 
pulse [99, 100]. GH receptor immunoreactivity 
has also been observed in association with both 
the nuclear membrane and chromatin, leading 
to the speculation that GH might exert its action 
directly via these nuclear receptors [101]. 
Whether GH receptor internalization is ligand- 
driven, and the importance of this internaliz- 
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Fig. 6. GH induction of CYP 2C12 protein in primary hepatocytes cultured from an adult male rat. 
Detection of 2C12 was by Western blotting using an anti-CYP 2C12 antibody. Human GH (0-1250 ng/ml, 
as shown) was applied for 5 days to primary rat hepatoeytes cultured as described [86]. Lane 7, parallel 
analysis of liver microsomes isolated from an untreated adult female rat. "-ITS"--Cells cultured in the 

absence of insulin, transferrin, and selenium. 
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ation for transduction of the effects of GH on 
liver P450 expression is, however, still undeter- 
mined. Studies of other GH responses indicate 
that activation of the GH receptor can lead to 
activation of protein kinase C [102-104]. Con- 
ceivably, activation of this pathway might also 
be important for the effects of GH on liver P450 
expression[105]. Insulin-like growth factor I 
(IGF-I), which is produced in the liver in re- 
sponse to GH stimulation, does not mimic the 
effects of GH on liver P450s[93, 106, 107], 
suggesting that an autocrine mechanism does 
not apply. 

Discrimination by the hepatocyte between the 
male and female plasma GH profiles is required 
to achieve the two dramatically different pat- 
terns of liver gene expression that GH can elicit. 
This discrimination may occur at the cell sur- 
face, which expresses a greater level of GH 
receptors in female as compared to male rats 
([108]; see, however, [109]), or it may involve 
differences in the intracellular signalling path- 
ways elicited by a chronic (female) versus an 
intermittent (male) pattern of GH stimulation. 
In order to address these issues, studies have 
been carried out to determine which of the three 
descriptive features of a GH pulse--namely, 
pulse height, duration, and frequency--is re- 
quired for proper recognition of a GH pulse as 
masculine. Direct measurement of the actual 
plasma GH profiles achieved when GH is ad- 
ministered to hypophysectomized rats by twice 
daily s.c. GH injection (i.e. the intermittent GH 
replacement protocol most commmonly used to 
stimulate CYP 2C11 expression) has revealed 
broad peaks of circulating GH, which last as 
long as 5~5 h [76]. Since these GH "pulses" 
effectively stimulate expression of the male- 
specific CYP 2C11, it is apparent that GH pulse 
duration need not be tightly regulated to elicit 
this response from the hepatocyte. 

Studies using a monosodium glutamate 
(MSG)-treated rat model have provided insight 
into the requirements with respect to GH pulse 
height. Neonatal treatment of rats with MSG 
destroys the neurons in the arcuate nucleus of 
the hypothalamus and their ability to stimulate 
secretion of GH-releasing factor, which nor- 
mally triggers pituitary GH release [110, 111]. 
Consequently, neonatal MSG treatment elimin- 
ates circulating GH at adulthood and abolishes 
liver 2Cll  expression [112], as well as the ex- 
pression of several other male-specific liver 
P450s[l13]. When MSG is administered at a 
sub-maximally effective dose, however, full ex- 

pression of CYP 2Cll  occurs, even though 
plasma GH peaks are reduced by up to 90% 
(intermittent GH peaks of 20-25 vs 
200-250 ng/ml peaks in normal rats) (Fig. 7). 
Thus, GH pulse height is also not a critical 
factor for stimulation of CYP 2C11 expression. 
This finding can be understood in terms of the 
Kd of the G H - G H  receptor complex, which at 
10 -~° M (2 ng/ml) [94], is only 1% of the usual 
peak plasma hormone level. The observation 
that GH-deficient dwarf rats (NIMR/AS) ex- 
press normal levels of 2Cll  and other sex- 
dependent liver P450s led some investigators to 
propose that GH might not be the pituitary 
factor responsible for regulation of these steroid 
hydroxylases [114]. However, a more likely ex- 
planation is that the level of circulating GH in 
these rats, while low (plasma peaks up to 
15 ng/ml; [115]), is sufficient to sustain normal 
P450 profiles. This suggestion is given strong 
support by the findings of the MSG study 
discussed above [112]. 

Experiments carried out in MSG-treated fe- 
male rats have led to an unexpected finding: 
elimination of detectable circulating GH 
(< 2 ng/ml) is not associated with any decrease 
in liver expression of the female-specific CYP 
2C12 or steroid 5~-reductase [113]. This result 
contrasts with the hypophysectomy and GH- 
replacement experiments summarized above, 
which indicated that expression of these en- 
zymes is obligatorily dependent on continuous 
GH exposure. One possible explanation of the 
MSG finding is that exceedingly low levels of 
GH are sufficient to maintain full expression of 
these female enzymes. Alternatively, additional 
factors that have yet to be identified play an 
important role in the regulation of these female- 
dominant enzymes. 

The importance of GH pulse frequency for 
stimulation of a male pattern of liver P450 
expression has been examined in hypophysec- 
tomized rats given defined GH pulses of regular 
frequency using an electrically controlled 
syringe pump[76]. Pulsations of 6 and 7 
times/day, which approximate the physiological 
frequency, as well as pulsations of lesser fre- 
quencies, could be produced. Analysis of liver 
P450 expression after 7 days GH pulsation 
revealed that GH frequencies of 2, 4, and 6 
pulses/day effectively stimulated male P450 
gene expression, whereas the 7 pulse/day rats 
did not respond. Thus, interpeak trough times 
of no detectable circulating GH that differ by as 
little as 35 min (i.e. 6 vs 7 GH pulses/day) give 
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rise to strikingly different patterns of liver gene 
expression. Accordingly, while GH pulse height 
and duration are not critical, if GH pulsation 
becomes too frequent, the hepatocytes loose 
their ability to recognize the pulse as "mascu- 
line". The cells thus require a minimum GH 
off-time (~  2.5 h in this hypophysectomized rat 
model), which implies a need for an obligatory 
recovery period, a condition not met in the 
case of hepatocytes exposed to GH continu- 
ously (female profile). This recovery period 
may be required to reset an intracellular sig- 

nailing apparatus, or perhaps may allow for 
replenishment of cell surface GH receptors. 
Interestingly, different pulse frequency require- 
ments were observed for GH stimulation of 
normal male growth rates in these same hypo- 
physectomized rats, a response which probably 
involves GH action at one or more extrahepatic 
sites [76]. Thus, distinct GH-responsive tissues, 
and conceivably even different GH responses 
within the same cell, may recognize distinct 
signalling elements in the sexually dimorphic 
patterns of circulating GH. 
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4.2. Molecular mechanisms 

As noted above, GH regulates steroid hy- 
droxylase P450 expression at the level of steady- 
state mRNA (pretranslational regulation). In the 
case of CYP 2C 12 mRNA, induction by continu- 
ous GH exposure requires ongoing protein syn- 
thesis, as indicated by the inhibitory effects of 
cycloheximide on CYP 2C12 mRNA accumu- 
lation in primary hepatocyte cultures [107]. Re- 
ports in the literature are conflicting with respect 
to whether this regulation involves transcrip- 
tional control of the P450 genes by GH, or 
whether posttranscriptional mechanisms also 
play a role (cf. [116] vs [68] and [117]). These 
reports, however, base their conclusions on nu- 
clear run-on transcription analyses, which can be 
subject to erroneous interpretation if the hybrid- 

izations are not carried out under conditions of 
DNA excess [117], if background radioactivity 
contributes significantly to the hybridization 
signals, or if cross-hybridization of the DNA 
probes to related RNA sequences occurs. The 
question of whether GH regulates CYP 2C11 
and 2C12 gene transcription was recently exam- 
ined in our laboratory by analyzing nuclear 
RNA precursors of the CYP 2C11 and 2C12 
mRNAs using exon/intron junction probes in an 
S1 nuclear protection assay [118]. These studies 
established that the unprocessed, nuclear 2C11 
and 2C12 RNAs (hnRNA) are responsive to 
circulating GH profiles in a manner indistin- 
guishable from the corresponding mature, cyto- 
plasmic mRNAs: no 2C12 mRNA precursors 
were detected in untreated male or hypophysec- 
tomized female liver nuclei (Fig. 8), and no 
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Fig. 8. Analysis of unprocessed CYP 2C12 nuclear RNA 0mRNA) by S1 nuclease protection using 
exon/intron junction oligonucleotide probes. Data shown are from [118] and evidence a female-specific, 
GH-dependent expression of these unprocessed transcripts of the 2C12 gene. M/GHp, GH given to intact 
male rats by continuous infusion using an osmotic minipump. F/HX/GHi, GH given by intermittent 
injection to a hypophysectomized female rat. The representation of the CYP 2C12 gene shown at the top 
of the figure is not drawn to scale. Horizontal bars correspond to the oligonucleotide probes. Hybrids 
shown in the autoradiograph at the bottom are of the lengths expected for uncleaved probes ON-66 and 

ON-67 (26 and 20 nucleotides, respectively). 
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2C11 mRNA precursors were found in un- 
treated female or hypophysectomized male liver 
nuclei. Thus, transport of 2Cll  and 2C12 
mRNA to the cytoplasm, and cytoplasmic 
mRNA stability are unlikely to be important 
GH-regulated control points for sex-specific 
P450 RNA expression. These conclusions were 
supported by nuclear run-on transcription 
analyses, which, additionally, provided firm ev- 
idence that GH regulates the sex-specific ex- 
pression of the CYP 2C11 and CYP 2C12 genes 
at the level of transcript initiation [118]. Tran- 
scription was also shown to be the major step 
for regulation of CYP 2A2 RNA, whose male- 
specific expression appears to be primarily a 
consequence of the suppressive effects of con- 
tinuous GH exposure in adult female rats [57]. 
Transcription initiation is thus the step at which 
three distinct effects of GH are operative: stimu- 
lation of 2Cll  expression by pulsatile GH, 
suppression of 2A2 (and 2C11) expression by 
continuous GH, and stimulation of 2C12 ex- 
pression by continuous GH[l l8]  (cf. Fig. 4). 

In order to further explore the molecular 
mechanisms that control the GH responsiveness 
of the CYP 2C11 gene [119] and the CYP 2C12 
gene [117], cloned Y-flanking DNA fragments 
of these genes have been analyzed by DNase I 
footprinting for a differential interaction of 
either gene with nuclear proteins (putative tran- 
scription factors) present in male vs female rat 
liver [118]. Several footprints were observed in 
the upstream few hundred nts of each gene, but 
without major differences between the male 
and female extracts. However, sex- and GH- 
dependent differences in DNase I cleavage pat- 
terns ("hypersensitivity" sites) were observed at 
several sites, indicating that GH can regulate 
specific protein-DNA interactions in the 5'- 
flanking regions of both genes. These differen- 
tial binding interactions were hypothesized to 
contribute to the sex-specific transcription of the 
CYP 2C11 and CYP 2C12 genes [118] (cf. GH- 
regulated binding of a liver nuclear factor to 
5'-flanking DNA of the GH-inducible rat serine 
protease inhibitor (Spi) 2.1 gene; [120]). In vitro 
transcription assays employing CYP 2C11 and 
2C12 Y-flanking DNA sequences did not, how- 
ever, faithfully mimic the sex-specific transcrip- 
tion of the 2C11 and 2C12 genes, indicating that 
additional cis-elements, trans-acting factors, or 
perhaps a higher-order chromatin structure may 
be required to achieve the transcriptional regu- 
lation of these genes that occurs in vivo [118]. 
More detailed molecular studies will be required 

to identify the full range of positive and negative 
components of the 2C 11 and 2C12 transcription 
machinery and their responsiveness to plasma 
GH patterns in order to fully elucidate the 
mechanisms by which GH regulates the sex- 
dependent expression of these liver P450 genes. 

5. THYROID HORMONE REGULATION OF 
NADPH P450 REDUCTASE 

Liver steroid hydroxylase activity is not only 
dependent on the level of expression of individ- 
ual steroid hydroxylase P450s, but also is influ- 
enced by the activity of NADPH P450 
reductase; this obligatory, and often rate- 
limiting, electron-transfer flavoprotein is re- 
quired for all microsomal P450-catalyzed 
steroid hydroxylations. Studies on the endocrine 
regulation of liver microsomal NADPH P450 
reductase have established that thyroid hor- 
mone (T4, thyroxine) plays a major role in 
regulating P450 reductase enzyme expression, 
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Fig. 9. Influence of thyroid hormone status on liver 
NADPH P450 reductase activity, as judged by hypophysec- 
tomy (HX) (A) or methimazole-induced hypothyroidism 
(MI) (B) (treatment for a total of 2 or 3 weeks, as indicated), 
followed by replacement of thyroxine 0"4) or other pitu- 
itary-dependent hormones. GHp, GH given by continuous 
infusion using an osmotic minipump. GHi, GH given by 
intermittent s.c. injection, twice daily. Figure based on data 

presented in [121,122]. 
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with a major decrease (/>80%) in liver 
microsomal P450 reductase activity effected by 
hypophysectomy or by methimazole-induced 
hypothyroidism. This activity loss is substan- 
tially reversed by physiological replacement of 
T4, but not by replacement of GH or other 
pituitary-dependent factors (Fig. 9)[121,122]. 
Moreover, T4-stimulated restoration of liver 
P450 reductase activity in vivo substantially 
increases microsomal steroid hydroxylase activi- 
ties, and restores indvidual liver P450s to their 
initial specific activities. A similar effect can be 
achieved by supplementation of isolated liver 
microsomes with exogenous, purified P450 re- 
ductase, which preferentially stimulates steroid 
hydroxylation catalyzed by microsomes pre- 
pared from thyroid-deficient animals [121]. 

Further studies have revealed that P450 re- 
ductase protein and mRNA are also decreased 
significantly in the hypothyroid state, and are 
restored by thyroxine treatment, providing evi- 
dence for pretranslational regulation [122]. In- 
terestingly, 1 h after thyroid hormone injection 
of hypothyroid rats, liver P450 reductase 
protein and activity are elevated prior to any 
detectable increase in the underlying mRNA. 
This suggests that thyroid hormone enhances 
the translatability of P450 reductase mRNA 
(cf. [123]), or, alternatively, that it stabilizes 
preexisting P450 reductase protein. This latter 
effect could be due to an increase in the avail- 
ability of the reductase's FMN and FAD cofac- 
tors, whose levels are decreased in hypothyroid 
rat liver [124]. Further complications have been 
observed when a hyperthyroid state is induced 
by triiodothyronine (T3)-treatment of euthyroid 
rats. In this case a 12-fold elevation of P450 
reductase RNA is achieved, but this does not 
translate into significant induction of P450 re- 
ductase protein or activity[122]. Since P450 
reductase mRNA can be readily induced by 

thyroid hormone treatment of primary hepato- 
cyte cultures (Ram and Waxman, unpublished 
experiments), it may be possible to use this 
cellular system to study in greater detail some of 
the complex regulatory effects that thyroid hor- 
mone confers on P450 reductase. 

In conclusion, steroid hydroxylation by liver 
P450s contributes in a major way to a number 
of important metabolic pathways, including 
cholesterol metabolism, bile acid synthesis and 
metabolism, and steroid hormone hydroxyl- 
ation. Each of these enzymes and pathways is 
subject to unique regulatory controls. In the 
case of the sex-dependent steroid hormone hy- 
droxylase P450s, GH secretory patterns and 
thyroid hormone levels are the most important 
endocrine regulators, but an underlying role 
for gonadal imprinting of adult hypothalamo- 
pituitary function is also evident (Fig. 10). GH 
regulates the sex-specific expression of liver 
P450s through transcriptional mechanisms, 
while thyroid hormone exerts a multiplicity 
of effects: on P450 reductase, which is a rate- 
limiting component of the overall hydroxylation 
pathway, at the level of the pituitary, through its 
positive effects on GH secretion, and through its 
direct effects on expression of individual cyto- 
chrome P450 genes. 
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